8 research outputs found

    Performance Enhancement in CZTS Solar Cells by SCAPS-1D Software

    Get PDF
    This is the abstract, usually it does not have references. Usually the reader will read this part first to know what this paper is about and decide upon it to continue reading or not. The font of main text is 10 Times New Roman with single line spacing of 6 pt after and 0 pt before. The titles of sections are font 12, bold and they have single line spacing of 6pt before, 12 pt after, subsections are font 12, Italic and they have single line spacing of 6pt before, 12 pt after. Both upper line and lower line enclosing this part is paper-specific and changes according to the paper, usually it is very similar to the journal header background color, abstract contents are Times New Roman size 10, no line spacing

    Performance Enhancement in CZTS Solar Cells by SCAPS-1D

    Get PDF
    The development of CZTS-based solar cells is limited by two factors, the low open circuit voltage and the conversion efficiency. This is why, in this study, the impact of Cu2ZnSnS4 (CZTS) absorber thin layer parameters on the performance of the proposed MoS2/CZTS/CdS/ZnO heterostructure is simulated by the standard software SCAPS-1D. The improving output performances of this structure; the open circuit voltage (Voc), the short circuit current density (Jsc), the fill factor (FF) and the efficiency (h) are obtained by varying the absorber layer thickness, acceptor carrier concentration NA and taking into account the effect of the electron work function of the back metal contact. The optimized cell provides an energy conversion efficiency of 15.23% (Voc = 0.99 V, Jsc = 21.89 mA/cm2, FF = 69.79%) for an optimal thickness of 2 μm, a doping of 1×1016 cm-3. Performance enhancement of the proposed solar cell is subject to the back metal contact, the optimal simulated value of 5.7 eV of which represents that of the Platinum’s work function Pt. The interest of this simulation makes it possible to adjust the solar cells dimensions, optimize the absorbent layers doping, choose appropriately the back metal contact and therefore help to considerably reduce the various recombination phenomena as well as the secondary phases

    Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice

    Get PDF
    International audienceMale infertility is a major health concern. Among its different causes, multiple morphological abnormalities of the flagella (MMAF) induces asthenozoospermia and is one of the most severe forms of qualitative sperm defects. Sperm of affected men display short, coiled, absent, and/or irregular flagella. To date, six genes (DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, and WDR66) have been found to be recurrently associated with MMAF, but more than half of the cases analyzed remain unresolved, suggesting that many yet-uncharacterized gene defects account for this phenotype. Here, whole-exome sequencing (WES) was performed on 168 infertile men who had a typical MMAF phenotype. Five unrelated affected individuals carried a homozygous deleterious mutation in ARMC2, a gene not previously linked to the MMAF phenotype. Using the CRISPR-Cas9 technique, we generated homozygous Armc2 mutant mice, which also presented an MMAF phenotype, thus confirming the involvement of ARMC2 in human MMAF. Immunostaining experiments in AMRC2-mutated individuals and mutant mice evidenced the absence of the axonemal central pair complex (CPC) proteins SPAG6 and SPEF2, whereas the other tested axonemal and peri-axonemal components were present, suggesting that ARMC2 is involved in CPC assembly and/or stability. Overall, we showed that bi-allelic mutations in ARMC2 cause male infertility in humans and mice by inducing a typical MMAF phenotype, indicating that this gene is necessary for sperm flagellum structure and assembly
    corecore